Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Structure ; 31(7): 801-811.e5, 2023 Jul 06.
Article in English | MEDLINE | ID: covidwho-2318034

ABSTRACT

Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Monoclonal , Epitopes , Neutralization Tests
2.
Cell Chem Biol ; 30(1): 85-96.e6, 2023 Jan 19.
Article in English | MEDLINE | ID: covidwho-2177358

ABSTRACT

As a clinical vaccine, lipid nanoparticle (LNP) mRNA has demonstrated potent and broad antibody responses, leading to speculation about its potential for antibody discovery. Here, we developed RAMIHM, a highly efficient strategy for developing fully human monoclonal antibodies that employs rapid mRNA immunization of humanized mice followed by single B cell sequencing (scBCR-seq). We immunized humanized transgenic mice with RAMIHM and generated 15 top-ranked clones from peripheral blood, plasma B, and memory B cell populations, demonstrating a high rate of antigen-specificity (93.3%). Two Omicron-specific neutralizing antibodies with high potency and one broad-spectrum neutralizing antibody were discovered. Furthermore, we extended the application of RAMIHM to cancer immunotherapy targets, including a single transmembrane protein CD22 and a multi-transmembrane G protein-coupled receptor target, GPRC5D, which is difficult for traditional protein immunization methods. RAMIHM-scBCR-seq is a broadly applicable platform for the rapid and efficient development of fully human monoclonal antibodies against an assortment of targets.


Subject(s)
Antibodies, Monoclonal , Immunization , Mice , Humans , Animals , Antibodies, Monoclonal/genetics , RNA, Messenger/genetics , Vaccination , Antibodies, Neutralizing/genetics , Mice, Transgenic
3.
J Virol ; 96(13): e0045522, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1901925

ABSTRACT

A human monoclonal antibody panel (PD4, PD5, PD7, SC23, and SC29) was isolated from the B cells of convalescent patients and used to examine the S protein in SARS-CoV-2-infected cells. While all five antibodies bound conformational-specific epitopes within SARS-CoV-2 spike (S) protein, only PD5, PD7, and SC23 were able to bind to the receptor binding domain (RBD). Immunofluorescence microscopy was used to examine the S protein RBD in cells infected with the Singapore isolates SARS-CoV-2/0334 and SARS-CoV-2/1302. The RBD-binders exhibited a distinct cytoplasmic staining pattern that was primarily localized within the Golgi complex and was distinct from the diffuse cytoplasmic staining pattern exhibited by the non-RBD-binders (PD4 and SC29). These data indicated that the S protein adopted a conformation in the Golgi complex that enabled the RBD recognition by the RBD-binders. The RBD-binders also recognized the uncleaved S protein, indicating that S protein cleavage was not required for RBD recognition. Electron microscopy indicated high levels of cell-associated virus particles, and multiple cycle virus infection using RBD-binder staining provided evidence for direct cell-to-cell transmission for both isolates. Although similar levels of RBD-binder staining were demonstrated for each isolate, SARS-CoV-2/1302 exhibited slower rates of cell-to-cell transmission. These data suggest that a conformational change in the S protein occurs during its transit through the Golgi complex that enables RBD recognition by the RBD-binders and suggests that these antibodies can be used to monitor S protein RBD formation during the early stages of infection. IMPORTANCE The SARS-CoV-2 spike (S) protein receptor binding domain (RBD) mediates the attachment of SARS-CoV-2 to the host cell. This interaction plays an essential role in initiating virus infection, and the S protein RBD is therefore a focus of therapeutic and vaccine interventions. However, new virus variants have emerged with altered biological properties in the RBD that can potentially negate these interventions. Therefore, an improved understanding of the biological properties of the RBD in virus-infected cells may offer future therapeutic strategies to mitigate SARS- CoV-2 infection. We used physiologically relevant antibodies that were isolated from the B cells of convalescent COVID-19 patients to monitor the RBD in cells infected with SARS-CoV-2 clinical isolates. These immunological reagents specifically recognize the correctly folded RBD and were used to monitor the appearance of the RBD in SARS-CoV-2-infected cells and identified the site where the RBD first appears.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/metabolism , Antibodies, Viral/metabolism , Humans , Protein Binding , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemical synthesis , Spike Glycoprotein, Coronavirus/metabolism
4.
Ccs Chemistry ; 3(1):1501-1528, 2021.
Article in English | Web of Science | ID: covidwho-1887435

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a novel strain of coronavirus, designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has caused a global pandemic rapidly sweeping across all countries, bringing social and economic hardship to millions. Most countries have implemented early warning measures to detect, isolate, and treat patients infected with SARS-CoV-2. This minireview summarizes some of those steps, in particular, testing methods and drug development in the context of chemical biology, and discusses the molecular basis of COVID-19's virulent transmissibility.

5.
Current Respiratory Medicine Reviews ; 17(4):201-208, 2021.
Article in English | Web of Science | ID: covidwho-1581530

ABSTRACT

Viral respiratory infections are a leading cause of illness and mortality in all age groups worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes Coronavirus disease 2019 (COVID-19) has spread throughout the world, igniting the twenty-first century's deadliest pandemic. Research has shown that phages, which are bacterial viruses, can help treat viral infections with the effect on the immune system and their antiviral activity. Phages have specific activity and affect only the target without any side effects on other parts of the human body. Human phage-related diseases have not been reported yet;therefore, phages can be a very safe treatment, especially in many viral infections. The results of clinical studies have a promising future regarding the use of phages. It is possible that the phages display technique aided in the production of SARS-CoV-2 specific antibodies against its viral protein, which prevented the virus from binding or replicating and preventing secondary microbial infections, which have been linked to many patient deaths. Furthermore, an effective antiviral vaccine can be produced by using the same technique. Given the growing number of coronaviruses cases around the world, in the present paper, we review the possible mechanisms of phages against the COVID-19 disease and the method that may be a solution to eliminate the virus.

6.
BMC Bioinformatics ; 21(Suppl 17): 527, 2020 Dec 14.
Article in English | MEDLINE | ID: covidwho-971742

ABSTRACT

BACKGROUND: SARS-CoV-2 is a severe respiratory infection that infects humans. Its outburst entitled it as a pandemic emergence. To get a grip on this outbreak, specific preventive and therapeutic interventions are urgently needed. It must be said that, until now, there are no existing vaccines for coronaviruses. To promptly and rapidly respond to pandemic events, the application of in silico trials can be used for designing and testing medicines against SARS-CoV-2 and speed-up the vaccine discovery pipeline, predicting any therapeutic failure and minimizing undesired effects. RESULTS: We present an in silico platform that showed to be in very good agreement with the latest literature in predicting SARS-CoV-2 dynamics and related immune system host response. Moreover, it has been used to predict the outcome of one of the latest suggested approach to design an effective vaccine, based on monoclonal antibody. Universal Immune System Simulator (UISS) in silico platform is potentially ready to be used as an in silico trial platform to predict the outcome of vaccination strategy against SARS-CoV-2. CONCLUSIONS: In silico trials are showing to be powerful weapons in predicting immune responses of potential candidate vaccines. Here, UISS has been extended to be used as an in silico trial platform to speed-up and drive the discovery pipeline of vaccine against SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Models, Immunological , SARS-CoV-2/immunology , Software , COVID-19/immunology , COVID-19/prevention & control , Computational Biology/methods , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL